
Motivation Dataset Design and Construction Experimental Results References

UniTSyn: A Large-Scale Dataset Capable of
Enhancing the Prowess of Large Language Models

for Program Testing

Yifeng He, Jiabo Huang, Yuyang Rong,
Yiwen Guo, Ethan Wang, Hao Chen

University of California, Daivs

September 24, 2024

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 1 / 25



Motivation Dataset Design and Construction Experimental Results References

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 2 / 25



Motivation Dataset Design and Construction Experimental Results References

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 3 / 25



Motivation Dataset Design and Construction Experimental Results References

LLM-based automatic unit test generation

Using an LLM to generate unit tests involves three steps:
1 Train an LLM with a massive code corpus.
2 Prompt the LLM with focal function.
3 Let the LLM generate a unit test function.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 4 / 25



Motivation Dataset Design and Construction Experimental Results References

Test generation is challenging for LLM

Unit test functions and their focal
functions have:

1 Different representations.
2 Fundamental

correspondences.
Therefore, a specialized dataset
with aligned focal-test pairs is
essential for LLM-based unit test
generation.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 5 / 25



Motivation Dataset Design and Construction Experimental Results References

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 6 / 25



Motivation Dataset Design and Construction Experimental Results References

UniTSyn: a multilingual dataset with function-level focal-test alignment

1 We download open-source software repositories and extract
their unit tests.

2 We use static analysis to identify the call to their focal
functions and use the language server protocol to get the
location of the focal function definition.

3 We store the aligned function-level focal-test pairs as training
data.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 7 / 25



Motivation Dataset Design and Construction Experimental Results References

Test function identification

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 8 / 25



Motivation Dataset Design and Construction Experimental Results References

We design a static analysis algorithm to identify test functions
across different programming languages.

1 Our algorithm traverses Abstract Syntax Trees (ASTs) to
locate test functions by:

1 heuristics: check function names (e.g., functions containing
“test”).

2 language-specific features: use language-specific syntax, like
Java’s @Test modifier in JUnit.

2 Our dataset construction framework provides a
language-agnostic interface to check for test functions using
callback hooks.

This framework supports new languages by adding custom hooks for
test function identification.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 9 / 25



Motivation Dataset Design and Construction Experimental Results References

Focal function call analysis

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 10 / 25



Motivation Dataset Design and Construction Experimental Results References

Then we identify the focal function call within a unit test function.
1 We follow TeCo’s [1] heuristic: Select the last function call

before the first assertion as the focal function.
2 Our algorithm traverses the AST using a post-order method to

detect the correct function call within the assertion.
Our design is

• extensible to multiple languages with minimal changes by
adding one extra function to the analysis.

• applicable across different languages through a unified
approach using the post-order tree traversal technique.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 11 / 25



Motivation Dataset Design and Construction Experimental Results References

Dataset statistics

Table 1: Dataset statistics.
Framework: static analysis for test extraction
#Proj: number of projects found on GitHub for each language
#Pairs: number of focal-test pairs collected for each language

Language Framework #Proj #Pairs

Python unittest, pytest 43 848 1 218 311
Java JUnit 25 488 1 097 518
Go testing 38 097 361 075
C++ GoogleTest 20 090 25 513
JavaScript MochaJS 17 621 13 293

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 12 / 25



Motivation Dataset Design and Construction Experimental Results References

Datasets comparison

Table 2: Datasets comparison.
#Proj: number of software projects in the dataset
#Lang: number of programming languages in the dataset
Unit Test: if the dataset specifically mines testing code
Alignment: the level of alignment between testing code (if exists) and
code to be tested.

The Stack [2] CAT-LM [1] TeCo [3] UniTSyn (ours)

#Proj 137.36M 197 730 1270 246 194
#Lang 30 2 1 5+
Unit Test 7 3 3 3

Alignment 7 file function function

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 13 / 25



Motivation Dataset Design and Construction Experimental Results References

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 14 / 25



Motivation Dataset Design and Construction Experimental Results References

Research questions

1 How accurate are the test cases generated by LLMs?
2 How many of the generated tests are complete?
3 Is it necessary to train LLMs with pairwise focal and test

functions?
4 What are the effects of training with multilingual testing code?

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 15 / 25



Motivation Dataset Design and Construction Experimental Results References

Accuracy of generated test cases

Table 3: Accuracy of tests generated by LLMs. The best results are
highlighted in bold.
#Params: the size of models
†: the models are intended for test generation.

Model #Params Py C++ Java JS Go Avg

CodeT5p 770M 30.6 33.7 26.9 37.1 32.9 32.2
CodeGen2 1.0B 34.0 40.7 24.1 30.5 36.1 33.1
WizardCoder 1.0B 36.8 43.9 28.7 31.3 47.7 37.7
InCoder 1.3B 34.2 33.5 22.6 24.4 31.5 29.2
SantaCoder 1.1B 36.2 34.7 36.5 30.6 31.5 33.9
CAT-LM† 2.7B 37.5 31.6 34.4 29.2 36.9 33.9
UniTester† (Ours) 1.1B 52.5 55.1 48.8 41.7 59.7 51.5

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 16 / 25



Motivation Dataset Design and Construction Experimental Results References

Coverage of generated unit tests on the focal function

Table 4: Completeness of LLM-generated tests.
#Params: size of the model. #Pass: percentage of tests for the 164
tasks that can be executed without errors.
Line, Stmt: average line and statement coverage, respectively.
†: the model is intended for test generation.

Python C++ Java Javascript Go
Model #Pass Line #Pass Line #Pass Line #Pass Line #Pass Stmt

CodeT5p 10.0 5.72 0.7 0.43 40.3 4.22 4.9 2.07 1.7 0.73
CodeGen2 4.1 2.41 11.6 7.07 52.3 5.12 48.5 27.65 19.2 10.99
WizardCoder 16.1 9.39 3.7 2.24 47.7 5.62 9.2 5.50 0.7 0.42
InCoder 3.0 1.76 0.0 0.00 15.0 1.54 0.5 0.29 1.3 0.78
SantaCoder 4.5 2.62 4.9 2.99 50.1 4.74 5.9 3.53 0.7 0.43
CAT-LM† 35.9 19.51 0.0 0.00 0.9 0.07 9.2 4.53 0.0 0.00
UniTester† (Ours) 41.2 20.71 28.1 13.39 103.1 10.78 53.3 27.59 36.0 12.39

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 17 / 25



Motivation Dataset Design and Construction Experimental Results References

RQ 1 & 2

RQ1: How accurate are the test cases generated by LLMs?
RQ2: How many of the generated tests are complete?
Our model trained on our dataset achieves the best assertion
accuracy and branch/statement coverage.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 18 / 25



Motivation Dataset Design and Construction Experimental Results References

Is it necessary to train LLMs with paired focal and test functions?

25
30

35
40

45

50
55

60
65

Python C++ Java JavaScript Go Overall

A
cc
ur
ac
y
(%
)

Baseline Unpaired Paired

Impact of pairing test and focal functions.
Baseline: the SantaCoder model, not trained with our data.
Unpaired: trained with decoupled test and focal functions.
Paired: UniTester trained with focal-test pairs.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 19 / 25



Motivation Dataset Design and Construction Experimental Results References

RQ 3

RQ3: Is it necessary to train LLMs with pairwise focal and test
functions?
A: Training with function-level aligned focal-test pairs increases
assertion accuracy in all five languages.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 20 / 25



Motivation Dataset Design and Construction Experimental Results References

What are the effects of training with multilingual testing code?

25
30

35
40

45
50

55

60
65

Python C++ Java JavaScript Go Overall

A
cc
ur
ac
y
(%
)

Baseline Mono Multi

Effects of training with multilingual testing code.
Baseline: the SantaCoder model, not trained with our data.
Mono: monolingual model trained with solely Python data.
Multi: multilingual models trained jointly with five languages.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 21 / 25



Motivation Dataset Design and Construction Experimental Results References

RQ 4

RQ4: What are the effects of training with multilingual testing
code?
A: For Python, the monolingual model demonstrated superior
capability in assertion accuracy. For other languages with stricter
syntax, the multilingual model achieves better results.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 22 / 25



Motivation Dataset Design and Construction Experimental Results References

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 23 / 25



Motivation Dataset Design and Construction Experimental Results References

[1] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric,
“Learning deep semantics for test completion,” in 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2111–2123, IEEE, 2023.

[2] D. Kocetkov, R. Li, L. B. allal, J. LI, C. Mou, Y. Jernite,
M. Mitchell, C. M. Ferrandis, S. Hughes, T. Wolf, D. Bahdanau,
L. V. Werra, and H. de Vries, “The stack: 3 TB of permissively
licensed source code,” Transactions on Machine Learning
Research, 2023.

[3] N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn,
“Cat-lm training language models on aligned code and tests,” in
2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 409–420, IEEE, 2023.

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 24 / 25



Motivation Dataset Design and Construction Experimental Results References

Thanks For Your Attention!
Any questions?

He et al. University of California, Daivs
UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 25 / 25


	Motivation
	Dataset Design and Construction
	Experimental Results
	References

