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LLM-based automatic unit test generation

Using an LLM to generate unit tests involves three steps:
1 Train an LLM with a massive code corpus.
2 Prompt the LLM with focal function.
3 Let the LLM generate a unit test function.
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Test generation is challenging for LLM

Unit test functions and their focal
functions have:

1 Different representations.
2 Fundamental

correspondences.
Therefore, a specialized dataset
with aligned focal-test pairs is
essential for LLM-based unit test
generation.
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UniTSyn: a multilingual dataset with function-level focal-test alignment

1 We download open-source software repositories and extract
their unit tests.

2 We use static analysis to identify the call to their focal
functions and use the language server protocol to get the
location of the focal function definition.

3 We store the aligned function-level focal-test pairs as training
data.
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Test function identification
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We design a static analysis algorithm to identify test functions
across different programming languages.

1 Our algorithm traverses Abstract Syntax Trees (ASTs) to
locate test functions by:

1 heuristics: check function names (e.g., functions containing
“test”).

2 language-specific features: use language-specific syntax, like
Java’s @Test modifier in JUnit.

2 Our dataset construction framework provides a
language-agnostic interface to check for test functions using
callback hooks.

This framework supports new languages by adding custom hooks for
test function identification.
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Focal function call analysis
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Then we identify the focal function call within a unit test function.
1 We follow TeCo’s [1] heuristic: Select the last function call

before the first assertion as the focal function.
2 Our algorithm traverses the AST using a post-order method to

detect the correct function call within the assertion.
Our design is

• extensible to multiple languages with minimal changes by
adding one extra function to the analysis.

• applicable across different languages through a unified
approach using the post-order tree traversal technique.
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Dataset statistics

Table 1: Dataset statistics.
Framework: static analysis for test extraction
#Proj: number of projects found on GitHub for each language
#Pairs: number of focal-test pairs collected for each language

Language Framework #Proj #Pairs

Python unittest, pytest 43 848 1 218 311
Java JUnit 25 488 1 097 518
Go testing 38 097 361 075
C++ GoogleTest 20 090 25 513
JavaScript MochaJS 17 621 13 293
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Datasets comparison

Table 2: Datasets comparison.
#Proj: number of software projects in the dataset
#Lang: number of programming languages in the dataset
Unit Test: if the dataset specifically mines testing code
Alignment: the level of alignment between testing code (if exists) and
code to be tested.

The Stack [2] CAT-LM [1] TeCo [3] UniTSyn (ours)

#Proj 137.36M 197 730 1270 246 194
#Lang 30 2 1 5+
Unit Test 7 3 3 3

Alignment 7 file function function
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Research questions

1 How accurate are the test cases generated by LLMs?
2 How many of the generated tests are complete?
3 Is it necessary to train LLMs with pairwise focal and test

functions?
4 What are the effects of training with multilingual testing code?
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Accuracy of generated test cases

Table 3: Accuracy of tests generated by LLMs. The best results are
highlighted in bold.
#Params: the size of models
†: the models are intended for test generation.

Model #Params Py C++ Java JS Go Avg

CodeT5p 770M 30.6 33.7 26.9 37.1 32.9 32.2
CodeGen2 1.0B 34.0 40.7 24.1 30.5 36.1 33.1
WizardCoder 1.0B 36.8 43.9 28.7 31.3 47.7 37.7
InCoder 1.3B 34.2 33.5 22.6 24.4 31.5 29.2
SantaCoder 1.1B 36.2 34.7 36.5 30.6 31.5 33.9
CAT-LM† 2.7B 37.5 31.6 34.4 29.2 36.9 33.9
UniTester† (Ours) 1.1B 52.5 55.1 48.8 41.7 59.7 51.5
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Coverage of generated unit tests on the focal function

Table 4: Completeness of LLM-generated tests.
#Params: size of the model. #Pass: percentage of tests for the 164
tasks that can be executed without errors.
Line, Stmt: average line and statement coverage, respectively.
†: the model is intended for test generation.

Python C++ Java Javascript Go
Model #Pass Line #Pass Line #Pass Line #Pass Line #Pass Stmt

CodeT5p 10.0 5.72 0.7 0.43 40.3 4.22 4.9 2.07 1.7 0.73
CodeGen2 4.1 2.41 11.6 7.07 52.3 5.12 48.5 27.65 19.2 10.99
WizardCoder 16.1 9.39 3.7 2.24 47.7 5.62 9.2 5.50 0.7 0.42
InCoder 3.0 1.76 0.0 0.00 15.0 1.54 0.5 0.29 1.3 0.78
SantaCoder 4.5 2.62 4.9 2.99 50.1 4.74 5.9 3.53 0.7 0.43
CAT-LM† 35.9 19.51 0.0 0.00 0.9 0.07 9.2 4.53 0.0 0.00
UniTester† (Ours) 41.2 20.71 28.1 13.39 103.1 10.78 53.3 27.59 36.0 12.39
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RQ 1 & 2

RQ1: How accurate are the test cases generated by LLMs?
RQ2: How many of the generated tests are complete?
Our model trained on our dataset achieves the best assertion
accuracy and branch/statement coverage.
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Is it necessary to train LLMs with paired focal and test functions?
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Impact of pairing test and focal functions.
Baseline: the SantaCoder model, not trained with our data.
Unpaired: trained with decoupled test and focal functions.
Paired: UniTester trained with focal-test pairs.
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RQ 3

RQ3: Is it necessary to train LLMs with pairwise focal and test
functions?
A: Training with function-level aligned focal-test pairs increases
assertion accuracy in all five languages.
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What are the effects of training with multilingual testing code?
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Effects of training with multilingual testing code.
Baseline: the SantaCoder model, not trained with our data.
Mono: monolingual model trained with solely Python data.
Multi: multilingual models trained jointly with five languages.
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RQ 4

RQ4: What are the effects of training with multilingual testing
code?
A: For Python, the monolingual model demonstrated superior
capability in assertion accuracy. For other languages with stricter
syntax, the multilingual model achieves better results.
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Thanks For Your Attention!
Any questions?
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