UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing

Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, Hao Chen

University of California, Daivs

September 24, 2024

He et al.

イロト イヨト イヨト イ

1 Motivation

- 2 Dataset Design and Construction
- **3** Experimental Results

4 References

Experimental Results

1 Motivation

- 2 Dataset Design and Construction
- **3** Experimental Results
- 4 References

Motivation 0●0 Dataset Design and Construction

Experimental Results

References

LLM-based automatic unit test generation

Using an LLM to generate unit tests involves three steps:

- 1 Train an LLM with a massive code corpus.
- **2** Prompt the LLM with focal function.
- 3 Let the LLM generate a unit test function.

He et al.

Dataset Design and Construction

Experimental Results

References

Test generation is challenging for LLM

Unit test functions and their focal functions have:

- Different representations.
- Fundamental correspondences.

Therefore, a specialized dataset with **aligned focal-test pairs** is essential for LLM-based unit test generation.

Experimental Results

イロト イロト イヨト

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 6 / 25 Dataset Design and Construction 0 = 0000000

Experimental Results

UniTSyn: a multilingual dataset with function-level focal-test alignment

- We download open-source software repositories and extract their unit tests.
- We use static analysis to identify the call to their focal functions and use the language server protocol to get the location of the focal function definition.
- We store the aligned function-level focal-test pairs as training data.

Motivation 000

He et al.

Dataset Design and Construction

Experimental Results

References

Test function identification

We design a static analysis algorithm to identify test functions across different programming languages.

- Our algorithm traverses Abstract Syntax Trees (ASTs) to locate test functions by:
 - heuristics: check function names (e.g., functions containing "test").
 - 2 language-specific features: use language-specific syntax, like Java's @Test modifier in JUnit.
- Our dataset construction framework provides a language-agnostic interface to check for test functions using callback hooks.
- This framework supports new languages by adding custom hooks for test function identification.

Motivation 000 Dataset Design and Construction

Experimental Results

< D > < B > < B >

References

Focal function call analysis

He et al. University of California, Daivs UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 10 / 25

He et al

University of California, Daivs

Then we identify the focal function call within a unit test function.

- We follow TeCo's [1] heuristic: Select the last function call before the first assertion as the focal function.
- Our algorithm traverses the AST using a post-order method to detect the correct function call within the assertion.
- Our design is
 - extensible to multiple languages with minimal changes by adding one extra function to the analysis.
 - applicable across different languages through a unified approach using the post-order tree traversal technique.

Experimental Results

Dataset statistics

Table 1: Dataset statistics.

Framework: static analysis for test extraction #Proj: number of projects found on GitHub for each language #Pairs: number of focal-test pairs collected for each language

Language	Framework	#Proj	#Pairs
Python	unittest, pytest	43848	1 218 311
Java	JUnit	25 488	1097518
Go	testing	38 097	361 075
C++	GoogleTest	20 090	25 513
JavaScript	MochaJS	17 621	13 293

- ▲ ロ > ▲ 団 > ▲ 団 > ▲ 団 > ク < ?

He et al. University of California, Daivs UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 12 / 25

Datasets comparison

Table 2: Datasets comparison.

#Proj: number of software projects in the dataset #Lang: number of programming languages in the dataset Unit Test: if the dataset specifically mines testing code Alignment: the level of alignment between testing code (if exists) and code to be tested.

	The Stack [2]	CAT-LM [1]	TeCo [3]	UniTSyn (ours)
#Proj	137.36M	197730	1270	246 194
#Lang	30	2	1	5+
Unit Test	×	1	✓	\checkmark
Alignment	×	file	function	function

Experimental Results

イロト イロト イヨト

1 Motivation

2 Dataset Design and Construction

3 Experimental Results

4 References

He et al. University of California, Daivs UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing 14 / 25

He et al

Research questions

- **1** How accurate are the test cases generated by LLMs?
- 2 How many of the generated tests are complete?
- Is it necessary to train LLMs with pairwise focal and test functions?
- **4** What are the effects of training with multilingual testing code?

Dataset Design and Construction

Experimental Results

References

Accuracy of generated test cases

Table 3: Accuracy of tests generated by LLMs. The best results are highlighted in bold.

#Params: the size of models

†: the models are intended for test generation.

Model	# Params	Ру	C++	Java	JS	Go	Avg
CodeT5p	770M	30.6	33.7	26.9	37.1	32.9	32.2
CodeGen2	1.0B	34.0	40.7	24.1	30.5	36.1	33.1
WizardCoder	1.0B	36.8	43.9	28.7	31.3	47.7	37.7
InCoder	1.3B	34.2	33.5	22.6	24.4	31.5	29.2
SantaCoder	1.1B	36.2	34.7	36.5	30.6	31.5	33.9
$CAT-LM^{\dagger}$	2.7B	37.5	31.6	34.4	29.2	36.9	33.9
UniTester† (Ours)	1.1B	52.5	55.1	48.8	41.7	59.7	51.5

▲日を▲聞を▲回を▲回を 回 ろくの

He et al.

Dataset Design and Construction

Experimental Results

Coverage of generated unit tests on the focal function

Table 4: Completeness of LLM-generated tests.

#Params: size of the model. #Pass: percentage of tests for the 164 tasks that can be executed without errors.

Line, Stmt: average line and statement coverage, respectively.

†: the model is intended for test generation.

	Python		C++		Java		Javascript		Go	
Model	#Pass	Line	#Pass	Line	#Pass	Line	#Pass	Line	#Pass	Stmt
CodeT5p	10.0	5.72	0.7	0.43	40.3	4.22	4.9	2.07	1.7	0.73
CodeGen2	4.1	2.41	11.6	7.07	52.3	5.12	48.5	27.65	19.2	10.99
WizardCoder	16.1	9.39	3.7	2.24	47.7	5.62	9.2	5.50	0.7	0.42
InCoder	3.0	1.76	0.0	0.00	15.0	1.54	0.5	0.29	1.3	0.78
SantaCoder	4.5	2.62	4.9	2.99	50.1	4.74	5.9	3.53	0.7	0.43
CAT-LM [†]	35.9	19.51	0.0	0.00	0.9	0.07	9.2	4.53	0.0	0.00
UniTester [†] (Ours)	41.2	20.71	28.1	13.39	103.1	10.78	53.3	27.59	36.0	12.39

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ���

He et al.

RQ1: How accurate are the test cases generated by LLMs? RQ2: How many of the generated tests are complete? Our model trained on our dataset achieves the best assertion accuracy and branch/statement coverage. Motivation 000

Dataset Design and Construction

Experimental Results

Is it necessary to train LLMs with paired focal and test functions?

Impact of pairing test and focal functions. Baseline: the SantaCoder model, not trained with our data. Unpaired: trained with decoupled test and focal functions. Paired: UniTester trained with focal-test pairs. RQ 3

 $\mathsf{RQ3:}$ Is it necessary to train LLMs with pairwise focal and test functions?

A: Training with function-level aligned focal-test pairs increases assertion accuracy in all five languages.

Motivation 000 Dataset Design and Construction

Experimental Results

What are the effects of training with multilingual testing code?

Effects of training with multilingual testing code. Baseline: the SantaCoder model, not trained with our data. Mono: monolingual model trained with solely Python data. Multi: multilingual models trained jointly with five languages.

RQ4: What are the effects of training with multilingual testing code?

A: For Python, the monolingual model demonstrated superior capability in assertion accuracy. For other languages with stricter syntax, the multilingual model achieves better results.

イロト イロト イヨト

1 Motivation

- 2 Dataset Design and Construction
- **3** Experimental Results

- P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, "Learning deep semantics for test completion," in 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 2111–2123, IEEE, 2023.
- [2] D. Kocetkov, R. Li, L. B. allal, J. Ll, C. Mou, Y. Jernite, M. Mitchell, C. M. Ferrandis, S. Hughes, T. Wolf, D. Bahdanau, L. V. Werra, and H. de Vries, "The stack: 3 TB of permissively licensed source code," *Transactions on Machine Learning Research*, 2023.
- [3] N. Rao, K. Jain, U. Alon, C. Le Goues, and V. J. Hellendoorn, "Cat-Im training language models on aligned code and tests," in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 409–420, IEEE, 2023.

Image: A math a math

990

Thanks For Your Attention! Any questions?

