
UniTSyn: A Large-Scale Dataset Capable of Enhancing the
Prowess of Large Language Models for Program Testing

Yifeng He
University of California at Davis

Davis, USA
yfhe@ucdavis.edu

Jiabo Huang
Tencent

Shenzhen, China
jiabohuang@tencent.com

Yuyang Rong
University of California at Davis

Davis, USA
PeterRong96@gmail.com

Yiwen Guo
UnafÏliated

China
guoyiwen89@gmail.com

Ethan Wang
University of California at Davis

Davis, USA
ebwang@ucdavis.edu

Hao Chen
University of California at Davis

Davis, USA
chen@ucdavis.edu

Abstract
The remarkable capability of large language models (LLMs) in gen-
erating high-quality code has drawn increasing attention in the
software testing community. However, existing code LLMs often
demonstrate unsatisfactory capabilities in generating accurate, com-
plete tests since they were trained on code snippets collected with-
out differentiating between code for testing and for other purposes.
In this paper, we present a large-scale dataset, UniTSyn, which can
enhance LLMs for Unit Test Synthesis. Associating tests with the
tested functions is crucial for LLMs to infer the expected behavior
and the logic paths to be verified. By leveraging Language Server
Protocol, UniTSyn achieves the challenging goal of collecting focal-
test pairs without per-project execution setups or per-language
heuristics, which tend to be fragile and difÏcult to scale. Containing
2.7 million focal-test pairs across five mainstream programming
languages, it can enhance the test generation ability of LLMs. Our
experiments demonstrate that, by building an autoregressive LLM
based on UniTSyn, we can achieve significant benefits in learning
and understanding unit test representations, resulting in improved
generation accuracy and code coverage across all the evaluated
programming languages.

CCS Concepts
• Security and privacy→ Software security engineering; • Soft-
ware and its engineering → Software testing and debugging;
• Computing methodologies → Neural networks.

Keywords
Large languagemodels, software testing, test case generation, dataset

ACM Reference Format:
Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao
Chen. 2024. UniTSyn: A Large-Scale Dataset Capable of Enhancing the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680342

Prowess of Large Language Models for Program Testing. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680342

1 Introduction
Software testing is a crucial yet labor-intensive part of the software
development process [68, 4]. The importance on testing on early
detection of program defects has been established for decades [13].
Recently, machine learning models, especially large language mod-
els (LLMs), have shown their prowess in composing high-quality
code [34, 55], which has further fueled the software testing com-
munity’s interest [56, 50] in applying LLMs to unit test generation
or other program testing applications.

Test generation is more challenging than conventional program-
ming synthesis, as the model needs to generate not only executable
code snippets but also precise predictions of input-output values.
Equipping off-the-shelf code LLMs [61, 69, 44] with prompts or
instructions for test generation is poorly suited, as demonstrated
in previous work [50]. A few recent projects [43, 50] targeted train-
ing testing-specific LLMs on code corpus that is closely related to
testing. A desired training set for this aim should include a large
number of test functions paired with their tested source functions,
also called focal functions [59, 56].

However, there are significant challenges surrounding the au-
tomation of collecting focal-test pairs since real-world projects do
not have to follow a consistent structure. Existing efforts either
rely on dynamic analysis or heuristics to locate focal functions [14,
43, 59] or find the coarse-grained correspondence between tests
and focal functions at the file level [50]. The former category is
difÏcult to scale across programming languages, which inhibits
the development of universal testing models. On the other hand,
the latter category is limited by weak focal-test correspondences,
which hamper the models’ capability to properly comprehend the
expected behavior and logic paths being verified. These challenges
underscore the need for more effective, scalable, language-agnostic
approaches to collect pairwise focal-test data to fully unleash the
potential of LLMs on software testing.

We present UniTSyn as a multilingual dataset capable of enhanc-
ing LLMs for Unit Test Synthesis. As shown in Figure 1, we inte-
grated the Language Server Protocol (LSP) into the dataset-building
process to harness its language extensibility and call-definition

1061

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5389-7128
https://orcid.org/0000-0001-7900-3439
https://orcid.org/0000-0003-0648-0255
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0009-0000-2715-0410
https://orcid.org/0000-0002-4072-0710
https://doi.org/10.1145/3650212.3680342
https://doi.org/10.1145/3650212.3680342

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

Figure 1: UniTSyn overview.
1. We download open-source software repositories and extract their unit tests.
2. We use static analysis to identify the call to their focal functions and use the language server protocol to get the location of
the focal function definition.
3. We store the aligned function-level focal-test pairs as training data.

Table 1: Dataset statistics.
Framework: static analysis for test extraction
#Proj: number of projects found onGitHub for each language
#Pairs: number of focal-test pairs collected for each language

Language Framework #Proj #Pairs

Python unittest, pytest 43 848 1 218 311

Java JUnit 25 488 1 097 518

Go testing 38 097 361 075

C++ GoogleTest 20 090 25 513

JavaScript MochaJS 17 621 13 293

matching ability. This substantially eases the difÏculty of imple-
menting dependency analysis heuristics for different languages
and executing different projects for dynamic analysis. Moreover,
we designed a flexible, unified static analyzer to find calls to focal
functions from the unit tests, which decreases the complexity of
performing call analysis for each language.

To explore the quality of the UniTSyn dataset, we further trained
an autoregressive model called UniTester to synthesize tests in
different programming languages. UniTSyn yielded significant per-
formance advantages on generating accurate, complete tests over
several state-of-the-art LLMs intended for both code and test synthe-
sis, which demonstrates that UniTSyn is a flexible dataset collection
framework.

To sum up, we make the following contributions:
(1) We provided a large-scale dataset of 2.7 million focal-test

function pairs across five commonly used programming lan-
guages, which will be useful in advancing the field of soft-
ware engineering through LLM coding assistance.

(2) We released our generic and easily applicable approach for
building multilingual unit test datasets with function-level
focal-test alignment. Our approach is extendable to any lan-
guage that has a mature implementation of LSP, allowing
the LLM to broaden its testing capabilities in more diverse
software engineering scenarios.

Table 2: Datasets comparison.
#Proj: number of software projects in the dataset
#Lang: number of programming languages in the dataset
Unit Test: if the dataset specifically mines testing code
Alignment: the level of alignment between testing code (if
exists) and code to be tested.

The Stack [30] CAT-LM [43] TeCo [50] UniTSyn (ours)
#Proj 137.36M 197 730 1270 246 194

#Lang 30 2 1 5+
Unit Test 7 3 3 3

Alignment 7 file function function

(3) We validated the quality of UniTSyn by training an autore-
gressive language model on it. The model generated more
accurate, complete tests compared with existing test and
code LLMs, which demonstrates the necessity and benefits
of training with explicit correspondence between tests and
focal functions for multilingual test generation.

2 Related Work
2.1 Code Understanding and Generation
The application of Machine Learning (ML) in Software Engineering
(SE) has gained significant attention recently, particularly with the
development of LLMs. LLMs can help SE in various ways, including
code generation [7, 35, 45, 34, 55, 62], code summarization [25, 33, 1],
and code classification [15, 20, 67, 23]. To facilitate the study of ML
for SE, a variety of datasets have been built.These datasets are either
collected from competitive programming contests, like POJ104 in
the CodeXGlue benchmark [38] and CodeNet [48], or open-source
software like the CodeSearchNet challenge [24], CoderEval [66], and
The Stack [30]. Datasets specialized for evaluating the code genera-
tion performance of LLMs like HumanEval [7] and HumanEval-X
[69] have also been established using algorithmic coding prob-
lems formatted just like on LeetCode. These datasets are built for
general-purpose program synthesis like CodeT5+ [61], CodeGen2

1062

UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

[44], InCoder [17], and SantaCoder [2]. However, as shown by [67]
and [23], test cases can greatly help improve the model’s ability
to understand code. With few datasets focusing on test cases, the
necessity of UniTSyn is justified.

2.2 Software Testing
2.2.1 Unit Testing. Unit testing is a common self-assessment test-
ing technique where developers use a set of inputs and outputs of
their code to validate that the code is working as expected [71]. In
this setting, a test case consists of an input and the corresponding
output after the code execution. The classical style of unit testing
includes three phases: arrange, act, and assert [27]. This design pat-
ternmakes the important action (invoking the focal function) comes
after arrangements of values and right before assertion. Therefore,
well-crafted unit testing functions usually have the call to the focal
function before the assertions. To evaluate the completeness and
comprehensiveness of test cases, code coverage is often used as a
common metric [65, 42]. Code coverage measures the percentage
of the code that is executed. Statement, line, and branch coverage
are often used depending on the coarseness of the testing require-
ments. Code coverage is measured because executing a piece of
code is the necessary condition for finding bugs in it [42]. In SE,
coverage-guided software testing has also shown its power in de-
tecting bugs in various software domains [10, 9, 57, 8, 16, 53, 54,
36], highlighting the importance of this metric. In general, unit
testing is an indispensable part of the modern software develop-
ment ecosystem, ensuring the quality and reliability of systems
across various domains. Therefore, generating test cases with high
coverage is a necessity. As demonstrated in our experiments, our
dataset is capable of enhancing the ability of LLMs to generate such
test cases.

2.2.2 Property-based Testing. Property-based testing is a hybrid
approach towards self-assessment testing and randomized testing,
where the developers identify a set of properties for the program
to satisfy and the framework generates suitable inputs randomly.
Instead of writing individual test cases or examples that check for
fixed input-out pair as unit tests, developers write tests that verify
if certain properties hold for a wide range of randomly generated
inputs. The idea of property-based testing was first proposed in
QuickCheck [11] for testing Haskell. Although it was designed for
functional programming with monadic abstraction, property-based
testing was later adopted by other languages in UniTSyn [40, 26,
18, 51, 47]. Due to its difference in style compared to unit tests, we
have not made any special treatment for property-based testing
functions, yet the collected dataset may also cover some code for
property-based testing and thus may benefit it as well, which can
be testified in detail in future work.

2.3 Software Testing via Machine Learning
The goal of test generation is to utilize ML models to aid software
testing, which can be achieved via prompting or instructing general-
purpose code LLMs [61, 69, 44], or training testing-specific LLMs.
ATLAS [63], AthenaTest [59], TOGA [14], TeCo [43], and CAT-LM
[50] are testing-specific LLMs based on the transformer architec-
ture. Some testing-specific LLMs are trained on large-scale test
functions and their aligned focal functions [43, 50], where focal

functions are the functions being tested [59, 56]. To align test and
focal functions, some work relies on dynamic execution context
or heuristics for locating focal functions [14, 43, 59]. The exten-
sibility of this approach is limited, since automating the setup of
dynamic execution for different projects is challenging even within
the same language. For example, TeCo’s execution-based data col-
lection was only applied to 1270 Java projects, which is one of the
easiest languages for cross-platform execution thanks to the Java
Virtual Machine and the Maven build system. The build system
sets up the project in a way that makes it easy to automate the
execution. Extending this method to other languages would likely
be prone to complications not present in TeCo. On the other hand,
relaxing the alignment at file-level [50] is easier to scale up than the
previous approach. However, this weak focal-test correspondence
disrupts the models’ ability to thoroughly understand the expected
behavior and logic paths in the focal function. We summarize the
characteristics of these popular datasets for code language models
and test generations in Table 2.

3 Design of UniTSyn Dataset
3.1 Challenges
As the interest in using LLMs for test generation grows, the inherent
limitations of their underlying datasets are becoming increasingly
apparent. Models like CAT-LM [50], specifically designed for test
generation, suffer from a lack of flexibility to adapt to various lan-
guages due to dataset constraints. By contrast, LLMs trained on
general-purpose code datasets like SantaCoder [2] can incorporate
new languages by pulling code from platforms like GitHub. How-
ever, their training data often lacks a crucial link between the test
functions and the focal functions. Without this correspondence,
the models face challenges in deducing the intended behavior and
logic paths of focal functions when generating tests. Consequently,
this leads to tests that are not precise or thorough. we aim to build
a dataset that emphasizes unit tests and their corresponding focal
functions while being multilingual. This leads to two major chal-
lenges. First, analyzing tests for their focal function calls requires
domain knowledge and language-specific rules since different lan-
guages have distinct grammars and unique syntax for unit tests.
Second, extracting precise focal function definitions from the de-
pendency graph is labor-intensive and unique to each language. To
overcome these challenges, we abstracted the differences in lan-
guages away from the static analysis pipeline to build a generalized
static call analyzer that operates on the Abstract Syntax Tree (AST)
of different languages, and integrate the existing language servers
to locate the focal function definition via their dependency analysis.
This design not only reduces the difÏculty of analyzing calls across
different programming languages but also eliminates the require-
ment of implementing several dependency analyses or setting up
multiple execution environments.

3.2 Data Collection
Our dataset contains a large assemblage of data collected from
open-source software. We used CAT-LM’s [50] approach to locate
repositories on GitHub that are under active development. More
specifically, we mined repositories in Python, Java, Go, C++, and
JavaScript that have more than 10 stars, new commits after Jan 1st,

1063

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

Figure 2: Test collection phase of the UniTSyn frontend. The
highlighted words are identifiers for locating testing func-
tions.

2020, and appropriate open-source licenses. to extend CodeSearch-
Net [24]. In addition, we filtered out repositories that are archived,
forked, or mirrored from other repositories.

3.3 Dataset Construction
Providing more fine-grained data with multilingual focal-test align-
ment is useful to machine learning for understanding the imple-
mentation of focal functions [14, 43, 59]. We designed UniTSyn to
achieve this goal. The frontend identifies potential test functions
and locates the focal functions. The backend will then retrieve the
source code of the focal function from the repository codebase.
Figure 1 shows an overview of the workflow for obtaining our
UniTSyn dataset. Our dataset construction method ensured that
all the functions in the dataset were associated with at least one
unit test function. This implies that the code in our dataset was the
most important portion of their repositories and was checked by
their developers intentionally

3.3.1 Parsing. To construct a multilingual unit test dataset, we
need to generalize the static analysis process among different lan-
guages. The first step in any static analysis is to parse the source
code into AST, which can be achieved using each language’s com-
piler or interpreter. To ease the differences in invoking different
tools for different languages, we selected tree-sitter [58] as the back-
bone of our parsing process. Tree-sitter can parse any programming
language that has a formal syntax definition. Using the tree-sitter,
we designed an easily extendable parsing and AST interface to
enable smooth static analysis for all languages.

3.3.2 Test Function Identification. We traverse ASTs to find the
test functions. To mitigate the differences between languages, we
provide an interface to determine whether an AST contains any test
functions. This interface takes hooks as call-back functions to check
for test functions. In this work, we present two implementations.
One relies on heuristics by checking the function name. The other
uses language-specific features to determine if a function is a test.
For example, in Java JUnit, all test functions need to have the
@Testmodifier. Figure 2 illustrates the test collection phase and the

1 @Test
2 public void testAdd () {
3 int x = 500; int offsetX = 100;
4 int y = 700; int offsetY = 200;
5 Position mp = new Position(x, y);
6 Position result = mp.add(offsetX, offsetY);
7 assertEquals(mp.x + offsetX , result.x);
8 }
9 public Position add(int x, int y) {
10 return new Position(this.x + x, this.y + y);
11 }

Listing 1: A Java test function and its paired focal

Figure 3: Focal function call analysis phase of UniTSyn fron-
tend. This figure shows a simplified AST of the example test
function in Listing 1. The red node in the AST is the first
encountered assertion node with a postorder tree traversal.
var_decl is the abbreviation of the variable declaration.

aforementioned hooks are summarized to the right of the figure.
To extend this framework to other languages and testing suites
or to improve the success rate of test function identification, one
could provide a new, specially designed hook. Some projects may
also include test functions that follow the practice of property-
based testing [11] For example, Python test functions with @given
decorator from the hypothesis [40] package. We treat these test
functions the same as unit testing functions.

3.3.3 Focal Function Call Analysis. Given a test function, we need
to identify its focal function call. Since a unit test function usu-
ally makes multiple function calls to set up its environment, it is
hard to identify the real call to the focal function. In this paper, we
followed TeCo’s [43] practice to select the last function call that
invokes a function definition in the repository before the first asser-
tion. Listing 1 demonstrates an example of a Java test case, where
line 6 includes the focal function call. To allow easy extension to
different languages as a unified method, we designed another in-
terface that the developers can implement with one extra function.
The static call analysis phase to build UniTSyn is demonstrated
in Figure 3. Our framework’s generic focal-call analysis algorithm
only requires one extra function to adapt to a new language. Our
analysis algorithm employs a post-order tree traversal on the AST,
starting from the root and progressing to the leftmost node. It visits
all the subtrees before returning to the root. Consequently, our
algorithm accurately identifies focal function calls within asser-
tion statements, as the nodes representing these function calls are
children of the assertion nodes.

1064

UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

3.3.4 Focal Function Extraction via LSP. We incorporated LSP (which
is a language-neutral and standardized protocol for communica-
tion between language servers and editor clients [41]) into our
dataset-building process to utilize its ability to decouple the fea-
tures and functionalities of programming languages from integrated
development environments [52] and its adaptability to different
programming languages. This design helps relieve the pressure on
dependency analysis across various languages and executing multi-
ple projects. This separation allows the language intelligence to run
as an independent service, and hence be integrated into our dataset
construction. The textDocument/definition API in LSP resolves
the definition location of a symbol at a given text document posi-
tion. Therefore, we developed the UniTSyn backend as a client to
the language servers, where we send textDocument/definition
requests to the language servers to locate the definition of the focal
function. The language servers send back the location of the focal
function as a response [19]. Our approach of using LSP can easily
extend to other languages as long as the language’s language server
is implemented. Our proposed method of aligning function-level
focal-test pairs using LSP is easily extendable, requiring only the
commands to start the corresponding language server.

3.4 Data Quality Analysis
We demonstrate the advancements in the quantity of focal-test
pairs in our dataset, as detailed in Table 1. Additionally, the benefits
of UniTSyn are demonstrated through its diversity in projects and
languages, and its precise function-level focal-test alignment in
Table 2. While large program datasets like The Stack [30] support
many languages, they focus less on testing code and fail to offer clear
guidance on the relationship between regular and test functions.
The existing test-focused datasets either is difÏcult to scale across
different programming language due to their design, or align focal
functions and tests weakly. In this section, we further assess the
quality of our data using empirical software engineering metrics.

3.4.1 Test-to-code Ratio. High-quality code repositories should be
well-tested. We further analyzed the quality of our dataset by the
test-to-code ratio of the projects we included. We compute and
analyze the test-to-code ratio A as

A =
!$�test
!$�func

where !$�test is the lines of discoverable testing code and !$�func
is the lines of regular functional code. This ratio provides insight
into the balance between testing code and the overall complex-
ity of the software. We exclude projects with a test-to-code ratio
of 0 when compiling the dataset. As illustrated in Figure 4, test
codes significantly outnumber regular functional codes within our
dataset. The distribution of the per-project test-to-code ratio for
Python, Java, C++, and Go is mainly between 0 to 2. For JavaScript
projects, the test-to-code ratio spreads more evenly. This broader
distribution is due to the distinctive functional syntax of MochaJS,
which structures a test function as a series of nested closures.

Additionally, the majority of projects in our dataset have a ratio
A ≥ 1, reflecting a wide diversity of test case implementations. This
finding is also supported by our code coverage experiment with
generated test cases in Section 4.3.2. Notably, the ratio distribution

for Python projects is more skewed to the right compared to other
languages. This skewness results from the behavior of the Python
language server’s text/definition request, which navigates to
the entire class implementation rather than just the constructor
as in other object-oriented languages. Such behavior results in a
higher denominator for the ratio calculation, further affecting the
distribution.

We also evaluated the ratio of focal functions paired with multi-
ple test functions. In our dataset, 24% of focal functions are paired
with more than one test function. If a focal method is paired with :
different test functions, we treat them as : unique focal-test pairs
during the continuous training stage of the model. Exposing the
model to multiple test functions for the same focal function teaches
it to generate more diverse test cases, achieving higher code cover-
age. This result is highlighted in Table 4.

3.4.2 Assertion Density. Adding assertions has a significant contri-
bution in reducing defects in software [5]. Assertion density [32]
is a common metric in measuring test code quality [3], and there-
fore is a good measurement to analyze the quality of our dataset.
Assertion density 3 is calculated as

3 =

#0BB4AC8>=B

!$�test

where #0BB4AC8>=B is the number of assert statements in our dataset
and !$�test is the line of testing code in our dataset.

We analyzed the assertion density across various programming
languages and summarized the findings in Figure 5. Our analysis
indicates that test functions in Python and C++ exhibit notably
higher assertion densities compared to other languages. The effect
of this higher overall per-project assertion density is also shown in
Section 4.3.4, where the Python subset demonstrates its contribution
to model accuracy on the monolingual variant. The distribution of
other languages centered around 0.2 (20%). In comparison to the
statistics listed by Athanasiou, Nugroho, Visser, and Zaidman with
a median of 8.4% and a mean of 9.1%, our dataset shows its quality
with a higher assertion density in all languages.

3.4.3 Code Coverage of the Collected Test Functions. Code coverage
is a crucial metric for assessing test adequacy [71, 27]. It thus also
plays an important role in evaluating the quality of a unit test
dataset. However, rebuilding open-source software (OSS) using a
standardized command poses a significant challenge and remains a
hot topic in software engineering research [21, 70]. This is due to
each project requiring different versions of the compiler, interpreter,
runtime, dependencies, etc. Furthermore, many OSS projects define
unique procedures for building the software and executing tests.

In our study, we sampled 10,000 Python projects to gather code
coverage data. We established a consistent testing environment
using a Docker container configured with Ubuntu 22.04 and Python
3.10. We executed the tests using the command pytest --cov=.
tests after installing the necessary dependencies. Our sampled
projects can be executed directly with the above command, where
we avoided applying complex setup scripts to avoid additional
evaluation bias. The code coverage of the projects we analyzed is
summarized in Figure 6, with an average coverage of 73.69% with
a standard deviation of 26.76. These findings are consistent with
prior empirical research on OSS by Kochhar, Thung, Lo, and Lawall

1065

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

0 1 2 3 4 5 6 7 8 9

Test-to-code Ratio
0

500

1000

1500

2000

2500

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(a) Python

0 1 2 3 4 5 6 7 8 9

Test-to-code Ratio
0

50

100

150

200

250

300

350

400

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(b) Java

0 1 2 3 4 5 6 7 8 9

Test-to-code Ratio
0

50

100

150

200

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(c) Go

0 1 2 3 4 5 6 7 8 9

Test-to-code Ratio
0

10

20

30

40

50

60

70

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(d) C++

0 1 2 3 4 5 6 7 8 9

Test-to-code Ratio
0

2

4

6

8

10

12

14

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(e) JavaScript

Figure 4: Distribution of per-project test-to-code ratio for all five languages in UniTSyn.

0.0 0.2 0.4 0.6 0.8 1.0

Assertion Density
0

200

400

600

800

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(a) Python

0.0 0.2 0.4 0.6 0.8 1.0

Assertion Density
0

100

200

300

400

500

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(b) Java

0.0 0.2 0.4 0.6 0.8 1.0

Assertion Density
0

50

100

150

200

250

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(c) Go

0.0 0.2 0.4 0.6 0.8 1.0

Assertion Density
0

10

20

30

40

50

60

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(d) C++

0.0 0.2 0.4 0.6 0.8 1.0

Assertion Density
0

10

20

30

40

50

60

70

80

Pe
r-p

ro
je

ct
 Fr

eq
ue

nc
y

(e) JavaScript

Figure 5: Distribution of per-project assertion density ratio for all five languages in UniTSyn.

P
y
th

o
n
 P

ro
je

c
ts

Figure 6: Coverage of projects included in UniTSyn.

and Hilton, Bell, and Marinov, reinforcing our confidence in the
overall quality of the projects from which we derived our data.

3.4.4 Focal-test Alignment Accuracy. We follow previous work [43]
and unit test design pattern [27] to select the last function before

assertion as the call to the focal function. However, this heuristic is
not perfect for finding the exact focal function. Since this requires
large manual labeling, we randomly sampled 100 data for this re-
buttal. We consider a pair to be aligned correctly if the function
name and comments suggest so. Our data shows that 19 of them
have only one function call, 59 of them have multiple function calls
and our heuristic identifies the focal call correctly, 6 of them are
testing for operators so there is no real focal function or matched
to virtual function, and 16 of them are incorrectly identified. There-
fore, our heuristic has an 84% success rate on these random samples.
Although not 100% correct in alignment, there is no direct method
that outperforms this heuristic since most of the test functions
follow the aforementioned three-phase practice. Although the focal
is not the exact match the developer intended, it is still considered

1066

UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

partially correct due to shared semantics and is also executed and
assessed in the test. We provide a detailed case study in Section 5.

For other test functions not following the common Arrange, Act,
Assert paradigm described in previous work [27], we still apply the
same method to find a function invocation. Even if the focal is not
the exact match that the developer intended, it is still considered
valid training data. This is because the matched function is called by
the test function and is assessed to be working correctly. Therefore,
focal-test pairs not following the Arrange, Act, Assert paradigm
exactly are still beneficial to the model.

4 Experiment
We built a test generation model called UniTester, which was
trained on UniTSyn and is capable of synthesizing unit tests for
programs in different languages. To investigate the quality of our
testing code corpus, we evaluated UniTester and several up-to-date
code or test generation models on HumanEval-X [69], as a popular
multilingual program synthesis benchmark that shares the same
programming languages involved in UniTSyn.

4.1 UniTester: A Unified Test Generation Model
We constructed our model based on established code generation
practices [49]. We utilized an autoregression signal [49, 55, 45]
for continual training of SantaCoder [2], which is a powerful yet
lightweight state-of-the-art code generation model composed of
1.1B parameters. We selected this model for its size, as this allows
it to strike a balance between effectiveness and efÏciency. To build
a training sample, we concatenated each focal-test function pair
with a newline symbol. We packed the training corpus and sampled
sequences of a constant length to feed into the models, thereby
avoiding padding samples of varying lengths and enhancing train-
ing efÏciency. We set the constant sequence length at 2048 with a
batch size of 32. Our training process employed a learning rate of
54−5, incorporating a logarithmic warmup for the initial 500 steps
and a cosine annealing strategy [37] for the rest. We also adopted a
weight decay of 0.05 to refrain from overfitting and catastrophic for-
getting [29]. Our UniTester was trained by an Adam optimizer [28]
for 36, 000 steps on the collected data containing around one billion
tokens. The entire training process using eight Nvidia V100 GPUs
spanned approximately 24 hours.

4.2 Research Questions and Evaluation Setup
To study the contributions of our collected testing code corpus,
UniTSyn, we investigated the following four questions:

RQ.1 How accurate are the test cases generated by LLMs?
Considering that the primary objective of software testing
is to identify potential flaws in code, it is essential to en-
sure that the generated test cases are accurate to minimize
incorrect evaluations. This requires models to not only com-
prehend the general semantics of focal functions but also
reason about their specific behavior and precise input-output
mappings, which is fundamentally challenging. In this case,
we followed Chen, Zhang, Nguyen, Zan, Lin, et al. to parse
the assertions from the generated tests to examine their stan-
dalone correctness and derive conclusions without mutual
influences.

RQ.2 How many of the generated tests are complete? We
define the completeness of tests in terms of both their exe-
cutability and the proportion of code in the focal functions
that has actually been executed by them. To evaluate how
complete the tests generated by LLMs are, we took the raw
outputs of models without intricate post-processing as in-
dividual tests and reported the line/statement and branch
coverage rates they achieved on the corresponding focal
function. This assessment allows us to better understand the
effectiveness of LLM-generated tests in covering various con-
ditions and scenarios within the codebase without excessive
manual intervention.

RQ.3 Is it necessary to train LLMs with pairwise focal
and test functions? UniTSyn is designed to identify test
functions and pair them with their targets in complex real-
world software projects. Given that the composition of test
functions heavily depends on the expected behavior of their
target focal functions, we were motivated to train using test-
focal function pairs. To justify our motivation, we broke the
pairwise connections and treated test and focal functions as
independent code snippets for LLMs training. The resulting
models were then compared with our UniTester that was
trained with pairwise data.

RQ.4 What are the effects of training with multilingual
testing code?While previous work [15, 20] have shown that
training language models on data of different distributions
can be beneficial, it was unclear whether this conclusion
also held for test generation.Therefore, we compared models
solely trained on Python to UniTester that was trained on
five different languages.This comparison aimed to determine
whether test generation models should be language-specific
or if they can be universal across languages.

4.2.1 Evaluation Datasets. we evaluated UniTester and the state-
of-the-art code LLMs on HumanEval-X [69], which is a popular and
multilingual code generation benchmark dataset. HumanEval-X
represents an extensive dataset encompassing 164 coding exercis-
es/tasks, each accompanied by their respective natural language
descriptions, manually composed solutions, and unit tests in Python,
C++, Java, JavaScript, and Go.The conventional evaluation protocol
for code generation models involve supplying the models with the
signature of the intended functions, coupled with the language
description to suggest the expected outcomes. Following this, the
solutions generated by the models are concatenated with the hand-
crafted unit tests for execution. If these executions proceed without
any errors, the code solutions produced by the models are deemed
correct. In contrast, our evaluation prompts the models to generate
tests using the solutions provided for tasks, rather than synthesizing
the programs based on their problem descriptions. Subsequently,
these canonical solutions are concatenated with the tests generated
for execution. This feature of the HumanEval-X benchmark guaran-
tees that the given version of the focal functions is correct, allowing
us to explore LLM’s ability to generate correct and useful test cases
without concern about bugs in the prompt. If the executions are
successful, we infer that the generated tests are correct.

We chose to experiment on an existing code generation bench-
mark instead of a random split of our collected test data to mitigate

1067

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

potential data leakage and facilitate a more straightforward execu-
tion setup. Previous work [50, 43, 56] on test generation typically
validate their models on code data collected from Github or other
public resources. Given that the success of the latest code LLMs
is also based on large-scale open-source coding resources, it is
challenging to avoid data leakage in such cases. Consequently, we
turned to the benchmark datasets intended for this purpose, ensur-
ing that all focal and test functions used for assessment had never
been seen during any stages of model training.

We further ensured there exists no benchmark leakage via two
methods. First, we ran a pairwise string comparison between the
benchmark functions and the functions we collected from GitHub
repositories tomake sure therewas nomatch. Furthermore, weman-
ually checked repositories related to HumanEval and HumanEval-X
on GitHub with more than 10 stars (as a filter requirement stated in
Section 3.2). We found that all the committed datasets had text-file
extensions such as txt, json, or jsonl, which were ignored by our
dataset construction method. Therefore, we can ensure there is no
benchmark leakage at our fine-tuning stage for the fairness of our
evaluation.

Moreover, HumanEval-X is also well crafted such that its test
cases can be executed without excessive efforts in setting up the
execution environments and sorting out the intricate dependencies
between packages. This allows for a more straightforward and unbi-
ased evaluation of the models’ performance in generating accurate
and comprehensive tests for software projects.

4.2.2 Instructive Prompts. Following CodeT’s approach [6], we
prompted the models to generate tests using language-specific as-
sert keywords. Examples of prompts for the first task in HumanEval-
X are shown in Figure 7. Specially, for models trained by instruction
tuning, we concatenated the focal function and our natural lan-
guage hint (“Check the correctness of...”) as the instruction
then asked the models to complete the test functions. The maximal
input length was set to 800 and the synthesized outputs were al-
lowed to have another 256 tokens at most. We set the temperature
for generation to 0.2 following [64, 50] and kept it consistent for
all models, then sampled ten outputs for each task. Subsequently,
we parsed and sampled the first ten unique assertions from the
generated tests by splitting them into sub-strings using the asser-
tion keywords as the separator [64], to compute accuracy on each
task. This ensures that different models produce a similar number
of assertions for verification.

4.2.3 Evaluation Metrics. Let # denote the total number of asser-
tions parsed from the outputs of a model, we execute the assertions
one at a time and count how many of them can proceed without
any error as # ′. Specifically, an assertion is considered successful if
its execution has the returns code 0.Then, we calculate the accuracy
as:

�22 =
′

#
.

Regarding the evaluation of completeness, we treated each output
of the models as an individual test and executed it independently.
We avoided applying intricate post-processing on all of the models’
outputs except for the Java ones, on which we found that adding
closing brackets for the test class is helpful to most models for
ensuring executability. To be specific, we report a “#Pass” metric

1 from typing import List
2 def has_close_elements(
3 numbers: List[float], threshold: float) -> bool:
4 ...
5 # Check the correctness of `has_close_elements `
6 def test_has_close_elements ():
7 assert has_close_elements(

Python

1 func HasCloseElements(
2 numbers []float64 , threshold float64) bool
3 { ... }
4 // Check the correctness of `HasCloseElements `
5 func TestHasCloseElements(t *testing.T) {
6 assert := assert.New(t)
7 assert.Equal(HasCloseElements(

Go

1 const hasCloseElements = (numbers , threshold) => {...}
2 // Check the correctness of `hasCloseElements `
3 const testHasCloseElements = () => {
4 console.assert(hasCloseElements(

JavaScript

1 bool has_close_elements(
2 vector <float > numbers , float threshold)
3 { ... }
4 // Check the correctness of `has_close_elements `
5 #undef NDEBUG
6 #include <assert.h>
7 int main(){
8 assert(has_close_elements(

C++

1 class Solution {
2 public boolean hasCloseElements(
3 List <Double > numbers , double threshold)
4 { ... }
5 }
6 public class Main {
7 // Check the correctness of `hasCloseElements `
8 public static void main(String [] args) {
9 Solution s = new Solution ();
10 assert s.hasCloseElements(

Java

Figure 7: Prompts for test generation in different languages

to show how many tests can proceed without error during execu-
tions, and the “Line” coverages to indicate how many lines of code
were executed by the tests over the total number of lines. Similarly,
“Branch” coverages are computed by the number of branches tra-
versed when executing tests over the total number of branches in
the code. The average results of ten trials are reported in Table 4.

4.2.4 Compared Models. We conducted extensive comparisons
between our proposed model and both the state-of-the-art code
generation models highlighted in Xiong, Guo, and Chen’s paper as
well as the latest test generation model [50]. In our evaluation, we
considered code generation models with a similar number of param-
eters to ours, encompassing both encoder-decoder (CodeT5+ [61])
and decoder-only structures (CodeGen2 [44], WizardCoder [39],
InCoder [17] and SantaCoder [2]). For test generation, we selected
CAT-LM [50] as our competitor, which was trained on unit tests
from Python and Java projects that were paired with their target
functions at the file level. CAT-LM was chosen because it is trained

1068

UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Accuracy of tests generated by LLMs. The best results
are highlighted in bold.
#Params: the size of models
†: the models are intended for test generation.

Model #Params Py C++ Java JS Go Avg

CodeT5p 770M 30.6 33.7 26.9 37.1 32.9 32.2
CodeGen2 1.0B 34.0 40.7 24.1 30.5 36.1 33.1
WizardCoder 1.0B 36.8 43.9 28.7 31.3 47.7 37.7
InCoder 1.3B 34.2 33.5 22.6 24.4 31.5 29.2
SantaCoder 1.1B 36.2 34.7 36.5 30.6 31.5 33.9
CAT-LM† 2.7B 37.5 31.6 34.4 29.2 36.9 33.9
UniTester† (Ours) 1.1B 52.5 55.1 48.8 41.7 59.7 51.5

on a much larger number of tokens (60B v.s. 1B) than our model
and has double our model size. This allowed us to demonstrate our
model’s superior performance, despite any potential advantages
stemming from the amount of training data and the model size.

4.3 Evaluation Results
4.3.1 RQ.1 How accurate are the test cases generated by LLMs? The
accuracy of the test cases generated by different models is presented
in Table 3. Our model achieved up to a 40% relative margin on
Python compared to the top competitor (CAT-LM), demonstrating
remarkable advantages over both code and test synthesis models. In
terms of the code generation models, UniTester beat the strongest
competitor (WizardCoder) by 36.6% on average. These results vali-
date the quality of the data in UniTSyn and indicate its benefits on
enhancing LLMs’ capability of in-depth code understanding and
reasoning in order to ensure the high accuracy of the generated
test cases. Our improvements over the baseline SantaCoder [2] on
the two languages that it was not trained on (C++ and Go) are on
par with the rest. The advantages are at times even more significant
on languages with insufÏcient training data, e.g., JavaScript. This
implies that it might not be necessary to have our base models
trained on every language of interest to generate high-quality tests.
In addition, we observed that our improvements over the top com-
petitors across different languages are somewhat dependent on the
sufÏciency of the tests collected, with the least improvement being
in JavaScript and the most in Python. This observation highlights
the contribution of UniTSyn, which is capable of collecting testing
data for different languages at scale.

4.3.2 RQ.2 How many of the generated tests are complete? We pre-
sented the average number of passing tests generated by different
models and the average coverage rates they achieved on the focal
functions in Table 4. The passing rates of each model across all
languages range from 2% to 32%. Low passing rates indicate the
necessity of both accurate and executable test functions generated
by LLMs. Our UniTester demonstrated considerable advantages in
this regard, with its average passing number being nearly twice
that of the top competitor, CodeGen2 [44]. This result shows the
inconsistency between the distributions of focal functions and tests,
emphasizing the necessity of training models with a high-quality
testing code corpus. We also observed that composing executable
tests for C++ was the most challenging among all the languages.
This is not surprising, as C++ is considered relatively weaker in read-
ability and harder to code in even for human developers. Moreover,

25

30

35

40

45

50

55

60

65

Python C++ Java JavaScript Go Overall

A
cc
u
ra
cy

(%
)

Baseline Unpaired Paired

Figure 8: Impact of pairing test and focal functions.
Baseline: the SantaCoder model, not trained with our data.
Unpaired: trained with decoupled test and focal functions.
Paired: UniTester trained with focal-test pairs.

UniTester yielded superior coverage rates, with absolute improve-
ments of up to 6.32% and an average of 2.8% regarding line coverage.
Such improvements underscore the effectiveness of UniTester in
covering various conditions in the focal functions.

4.3.3 RQ.3 Is it necessary to train LLMs with pairwise focal and test
functions? In Figure 8, we constructed an “Unpaired” variant of
UniTester (“Paired”) by decoupling test functions from their tar-
gets for model training and compared it with our models trained
with pairwise focal-test data. The unpaired variant of UniTester
demonstrated its capability to generate more accurate tests than
the baseline. While SantaCoder’s paper did not explicitly state the
exclusion of testing code from their training corpus, it is likely that
their model was also trained with a certain number of test functions.
However, it is shown to be less competent for test generation than
the “Unpaired” model. One possible reason for this is the more
balanced focal-test functions in UniTSyn, despite being unpaired.
Furthermore, the remarkable performance advantages of UniTester
over its unpaired counterpart indicate the importance of associat-
ing test functions with their targets. Including focal functions in
the context when generating tests explicitly provides the models
with insights into the expected usages and behavior. Without these
insights, the model can only learn to make reasonable predictions
for test functions by memorizing all possible focal functions, rather
than through reasoning. This observation highlights the value of
UniTSyn on not only collecting testing data but also matching it
with the focal functions in a language-agnostic manner.

4.3.4 RQ.4 What are the effects of training with multilingual test-
ing code? The construction of all-purpose code generation models
has been garnering increased attention. Previous studies have also
suggested the potential benefits of training on data with shared
semantics but different distributions [15]. Our proposed UniTSyn
is extendable to collect tests for any programming language with
an available language server, enabling us to build a universal test
generation model. To investigate the best practice of utilizing a
multilingual testing code corpus for training LLMs, we compared
UniTester with its monolingual variant, which was trained solely on

1069

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

Table 4: Completeness of LLM-generated tests.
#Params: size of the model. #Pass: percentage of tests for the 164 tasks that can be executed without errors.
Line, Stmt, Branch: average line, statement, and branch coverage, respectively.
†: the model is intended for test generation.
Limited by the coverage evaluation tools we adopted, branch coverage is not available on C++ and Go.

Python C++ Java Javascript Go
Model #Params #Pass Line Branch #Pass Line #Pass Line Branch #Pass Line Branch #Pass Stmt
CodeT5p 770M 10.0 5.72 5.41 0.7 0.43 40.3 4.22 2.01 4.9 2.07 1.01 1.7 0.73
CodeGen2 1B 4.1 2.41 2.34 11.6 7.07 52.3 5.12 3.29 48.5 27.65 23.87 19.2 10.99
WizardCoder 1B 16.1 9.39 8.95 3.7 2.24 47.7 5.62 4.09 9.2 5.50 5.32 0.7 0.42
InCoder 1.3B 3.0 1.76 1.60 0.0 0.00 15.0 1.54 0.91 0.5 0.29 0.26 1.3 0.78
SantaCoder 1.1B 4.5 2.62 2.59 4.9 2.99 50.1 4.74 1.83 5.9 3.53 3.23 0.7 0.43
CAT-LM† 2.7B 35.9 19.51 18.03 0.0 0.00 0.9 0.07 0.00 9.2 4.53 3.49 0.0 0.00
UniTester† (Ours) 1.1B 41.2 20.71 18.27 28.1 13.39 103.1 10.78 4.57 53.3 27.59 23.34 36.0 12.39

25

30

35

40

45

50

55

60

65

Python C++ Java JavaScript Go Overall

A
cc
u
ra
cy

(%
)

Baseline Mono Multi

Figure 9: Effects of training with multilingual testing code.
Baseline: the SantaCoder model, not trained with our data.
Mono: monolingual model trained with solely Python data.
Multi: multilingual models trained jointly with five lan-
guages.

the Python subset of UniTSyn. We denoted UniTester and its mono-
lingual variant by “Multi” and “Mono” respectively in Figure 9. The
figure reveals that the monolingual model demonstrated superior
capability in generating high-quality tests for Python. This capa-
bility transferred well to other scripting languages like JavaScript
and Go, but less so to C++ and Java. These results suggest modest
transferability between syntactically similar languages but also
indicates the potential for negative impacts elsewhere. Regardless
of whether the aim is to build test generation models for specific
languages or for general purposes, a flexible and universal frame-
work for collecting tests from different languages is indispensable.
This demonstrates the contribution of our proposed UniTSyn in the
field of software testing.

5 Limitations
Hooks for Different Unit Testing Framework. Despite our effort to

design UniTSyn to involve as little human effort as possible, some
manual settings are inevitable. For example, C++ and JavaScript do
not have a commonly used testing framework, meaning that the

1 def multiple(a: int , b: int):
2 return a * b
3 def is_even(number: int):
4 return number % 2 == 0
5 def test_multiplication ():
6 a: int = random.randint(0, 100)
7 mul_res: int = multiply(a, 2)
8 prop_res: bool = is_even(mul_res)
9 assertTrue(prop_res)

Listing 2: A Python property-based testing as partially correct
paired by UniTSyn’s heuristic

developer has to implement the hook to identify test functions for
each framework. Since we only implemented the test function iden-
tification hook for the GoogleTest suite, this accounts for our low
repository number in C++. We believe one can extract more focal-
test pairs from the repositories by applying more precise hooks
to our framework. Our goal is to build an extensible multilingual
dataset instead of diving deep into different C++ and JavaScript
testing suites.

Focal Call Selection Heuristics. We randomly sampled 100 exam-
ples to evaluate the accuracy of this focal-test pairing heuristic in
Section 3.4.4. Our heuristic achieved 84% accuracy. Even though
some of the focal functions are not the exact match, they share
close semantics or functionality with the real focal function as a
wrapper or a related member function of the same class. In this
section, we provide some detailed case studies on the failed cases
and discuss possible directions for future work.

First, even if the focal is not the exact match the developer in-
tended, it is still considered partially correct. This is because the
match function is called by the test function and is assessed to be
working correctly. Taking the MathOperations class in Listing 2
as an example, though the test is named testMultiplication,
its implementation also checks if MathOperations.isEven works
correctly. Therefore, it can also be considered as a test function
for MathOperations.isEven. This example is also a practice of
property-based testing [11] but without generating multiple cases
from the input space, which is not in the scope of UniTSyn.

Second, some testing functions may receive the object under
test from its parameter instead of constructing it in its function
body. For example in Listing 3, pytest allows users to parametrize

1070

UniTSyn: A Large-Scale Dataset Capable of Enhancing the Prowess of Large Language Models for Program Testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 def has_attribute(self , attribute: str)->bool:
2 return any ([(key_node.value == attribute) for key_node , _

in self.yaml_node.value])
3 def test_dashes_to_unders_in_keys(class_node: yatiml.Node)->

None:
4 assert class_node.has_attribute('dashed -attr')
5 class_node.dashes_to_unders_in_keys ()
6 assert class_node.has_attribute('dashed_attr ')
7 assert class_node.has_attribute('list1 ')

Listing 3: A Python parametrized test
1 def _makeOne(self , system , val=None):
2 from pyramid.events import BeforeRender
3 return BeforeRender(system , val)
4 def test_setdefault_fail(self):
5 event = self._makeOne ({})
6 result = event.setdefault('a', 1)
7 self.assertEqual(result , 1)

Listing 4: A Python test for imported function

tests [46]. In this case, no program analysis based heuristic can
compute the correct focal function given solely the test function.
The correct focal function for test_dashes_to_unders_in_key
would be the class constructor of yatiml.Node.

The third frequent mismatched case is testing for imported li-
brary functions. When analyzing our dataset, we found that some
test functions make assertions for the output of library functions.
For example in Listing 4, test_setdefault_fail is testing the
setdefault function. Our heuristic only matches focal functions
defined in the project’s codebase, whereas setdefault is a class
method of BeforeRender, which is imported from pyramid.

In our experiments, we have found identifying the last function
call before an assertion is the most direct and reasonable heuristic.
Nevertheless, there is room for further improvement in this. One
potential method involves counting function calls to determine the
most frequently called function as the focal point. Beyond the AST
level of program abstraction, the Control Flow Graph (CFG) of the
program could also be utilized for this purpose. For instance, com-
bining a random walk on the CFG with weighted paths [12] might
be a viable approach. However, these methods are not without flaws.
The complex heuristics pose significant challenges in generaliza-
tion across different programming languages, which is essential for
building a multilingual and diverse dataset like UniTSyn.

6 Conclusion
In this paper, we present UniTSyn, a novel, diverse, and large-scale
dataset containing function-level focal-test pairs designed to stimu-
late AI in understanding and writing programs, particularly for test
cases. This dataset not only excels in size and diversity, but is also
effortlessly extendable to other programming languages for specific
tasks. We further built an autoregressive model based on UniTSyn
to verify the quality of the collected testing code corpus. This is
shown by its superiority in terms of both the accuracy and complete-
ness of the generated tests. We demonstrate that UniTSyn can be
useful for the development of AI for software testing and program
understanding in general. Our code and data are available [60].

Acknowledgements
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1801751 and 1956364, and by UC
Noyce Initiative. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science
Foundation or UC.

References
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A transformer-based approach for source code summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Online, (July 2020). https://doi.org
/10.18653/v1/2020.acl-main.449.

[2] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christo-
pher Akiki, et al. 2023. Santacoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988.

[3] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.
Test code quality and its relation to issue handling performance. IEEE Transac-
tions on Software Engineering, 40, 11, 1100–1125.

[4] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their ides. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, Bergamo, Italy, 179–190. isbn:
9781450336758. https://doi.org/10.1145/2786805.2786843.

[5] Casey Casalnuovo, PremDevanbu, Abilio Oliveira, Vladimir Filkov, and Baishakhi
Ray. 2015. Assert use in github projects. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering. https://doi.org/10.1109/ICSE.2015.88.

[6] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, et al. 2023.
Codet: code generation with generated tests. In The Eleventh International
Conference on Learning Representations.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, et al. 2021. Evaluating large language models trained on code.
(2021). arXiv: 2107.03374 [cs.LG].

[8] Peng Chen and Hao Chen. 2018. Angora: efÏcient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP), 711–725. https://doi.org
/10.1109/SP.2018.00046.

[9] Peng Chen, Jianzhong Liu, and Hao Chen. 2019. Matryoshka: fuzzing deeply
nested branches. In Proceedings of the 2019 ACMSIGSACConference on Computer
and Communications Security (CCS ’19). Association for Computing Machinery,
London, United Kingdom, 499–513. isbn: 9781450367479.

[10] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of jvm implementations. SIGPLAN Not.,
51, 6, (June 2016), 85–99. https://doi.org/10.1145/2980983.2908095.

[11] Koen Claessen and John Hughes. 2000. Quickcheck: a lightweight tool for
random testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association
for Computing Machinery, New York, NY, USA, 268–279. isbn: 1581132026.
https://doi.org/10.1145/351240.351266.

[12] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. 2018. Path-based
function embedding and its application to error-handling specification mining.
In Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE’18). ACM,
423–433. https://doi.org/10.1145/3236024.3236059.

[13] 1972. Chapter i: notes on structured programming. Structured Programming.
Academic Press Ltd., GBR, 1–82. isbn: 0122005503.

[14] Elizabeth Dinella, Gabriel Ryan, ToddMytkowicz, and Shuvendu K. Lahiri. 2022.
Toga: a neural method for test oracle generation. In Proceedings of the 44th In-
ternational Conference on Software Engineering (ICSE ’22). Association for Com-
puting Machinery, Pittsburgh, Pennsylvania, 2130–2141. isbn: 9781450392211.
https://doi.org/10.1145/3510003.3510141.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, et al. 2020.
CodeBERT: a pre-trained model for programming and natural languages. In
Findings of the Association for Computational Linguistics: EMNLP 2020. https:
//doi.org/10.18653/v1/2020.findings-emnlp.139.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. Afl++
combining incremental steps of fuzzing research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies, 10–10.

[17] Daniel Fried, Armen Aghajanyan, Jessy Lin, SidaWang, EricWallace, et al. 2022.
Incoder: a generative model for code infilling and synthesis. arXiv preprint
arXiv:2204.05999.

[18] [n. d.] Gopter: the golang property tester. https://github.com/leanovate/gopter.
[19] Nadeeshaan Gunasinghe and Nipuna Marcus. 2021. Language Server Protocol

and Implementation. Springer. Chap. 8.
[20] Daya Guo, Shuai Lu, Nan Duan, YanlinWang,Ming Zhou, et al. 2022. Unixcoder:

unified cross-modal pre-training for code representation. In ACL.
[21] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017.

Automatic building of java projects in software repositories: a study on feasi-
bility and challenges. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 38–47.

1071

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/ICSE.2015.88
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/2980983.2908095
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://github.com/leanovate/gopter

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yifeng He, Jiabo Huang, Yuyang Rong, Yiwen Guo, Ethan Wang, and Hao Chen

[22] Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A large-scale study
of test coverage evolution. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 53–63.

[23] Jiabo Huang, Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, et al. 2023.
Code representation pre-training with complements from program executions.
(2023). arXiv: 2309.09980 [cs.SE].

[24] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2020. Codesearchnet challenge: evaluating the state of semantic
code search. (2020). arXiv: 1909.09436 [cs.LG].

[25] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics, Berlin, Germany, (Aug. 2016). https://doi.o
rg/10.18653/v1/P16-1195.

[26] [n. d.] Junit-quickcheck: property-based testing, junit-style. https://pholser.git
hub.io/junit-quickcheck/site/1.0/.

[27] Vladimir Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Simon
and Schuster.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: a method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

[29] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, et al. 2017. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114, 13, 3521–3526.

[30] Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, et al.
2023. The stack: 3 TB of permissively licensed source code. Transactions on
Machine Learning Research.

[31] Pavneet Singh Kochhar, Ferdian Thung, David Lo, and Julia Lawall. 2014. An
empirical study on the adequacy of testing in open source projects. In 2014 21st
Asia-Pacific Software Engineering Conference. Vol. 1. IEEE, 215–222.

[32] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. 2006. Assessing
the relationship between software assertions and faults: an empirical investiga-
tion. In 2006 17th International Symposium on Software Reliability Engineering,
204–212. https://doi.org/10.1109/ISSRE.2006.14.

[33] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[34] Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Ko-
cetkov, et al. 2023. Starcoder: may the source be with you! Transactions on
Machine Learning Research.

[35] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
et al. 2022. Competition-level code generation with alphacode. Science, 378,
6624, 1092–1097. https://www.science.org/doi/abs/10.1126/science.abq1158
eprint: https://www.science.org/doi/pdf/10.1126/science.abq1158.

[36] Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Song Linhai. 2021. Auto-
matically detecting and fixing concurrency bugs in go software systems. In
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). (Apr. 19–23, 2021).

[37] Ilya Loshchilov and Frank Hutter. 2016. SGDR: stochastic gradient descent
with restarts. CoRR. http://arxiv.org/abs/1608.03983.

[38] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, et al. 2021.
CodeXGLUE: a machine learning benchmark dataset for code understanding
and generation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[39] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, et al. 2024. Wiz-
ardcoder: empowering code large language models with evol-instruct. InThe
Twelfth International Conference on Learning Representations.

[40] David R MacIver, Zac Hatfield-Dodds, et al. 2019. Hypothesis: a new approach
to property-based testing. Journal of Open Source Software, 4, 43, 1891.

[41] Microsoft. 2024. Language server protocol. (Jan. 11, 2024). https://microsoft.git
hub.io/language-server-protocol/.

[42] Nachiappan Nagappan and Thomas Ball. 2010. Evidence-based failure predic-
tion. In Making Software. Greg Wilson Andy Oram, (Ed.) O’REILLY. Chap. 23.

[43] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J Mooney, and Milos
Gligoric. 2023. Learning deep semantics for test completion. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2111–2123.

[44] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo
Zhou. 2023. Codegen2: lessons for training llms on programming and natural
languages. InThe Eleventh International Conference on Learning Representations.

[45] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, et al. 2023.
Codegen: an open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations.

[46] [n. d.] Parametrizing tests. https://docs.pytest.org/en/8.0.x/example/parametri
ze.html.

[47] [n. d.] Property based testing framework for javascript/typescript. https://gith
ub.com/dubzzz/fast-check.

[48] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
et al. 2021. Codenet: a large-scale ai for code dataset for learning a diversity of
coding tasks. In Neural Information Processing Systems (NeuralIPS).

[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1, 8, 9.

[50] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent J Hellendoorn.
2023. Cat-lm training language models on aligned code and tests. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering. IEEE.

[51] [n. d.] Rapidcheck: quickcheck clone for c++ with the goal of being simple to
use with as little boilerplate as possible. https://github.com/emil-e/rapidcheck.

[52] Jonas Kjær Rask, Frederik Palludan Madsen, Nick Battle, Hugo Daniel Macedo,
and Peter Gorm Larsen. 2021. The specification language server protocol: a
proposal for standardised lsp extensions. In Proceedings of the 6th Workshop on
Formal Integrated Development Environment, 3–18.

[53] Yuyang Rong, Peng Chen, and Hao Chen. 2020. Integrity: finding integer errors
by targeted fuzzing. In International Conference on Security and Privacy in
Communication Systems. Springer, 360–380.

[54] Yuyang Rong, Chibin Zhang, Jianzhong Liu, and Hao Chen. 2024. Valkyrie:
improving fuzzing performance through deterministic techniques. Journal of
Systems and Software, 209, 111886.

[55] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, et al.
2023. Code llama: open foundation models for code. (2023). arXiv: 2308.12950
[cs.CL].

[56] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering.

[57] Kosta Serebryany. 2016. Continuous fuzzing with libfuzzer and addresssanitizer.
In 2016 IEEE Cybersecurity Development (SecDev), 157–157. https://doi.org/10.1
109/SecDev.2016.043.

[58] [n. d.] Tree-sitter introduction. https://tree-sitter.github.io/tree-sitter/.
[59] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel

Sundaresan. 2021. Unit test case generation with transformers and focal context.
(2021). arXiv: 2009.05617 [cs.SE].

[60] 2024. UniTSyn. https://doi.org/10.5281/zenodo.12639546.
[61] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, et al. 2023.

Codet5+: open code large language models for code understanding and gener-
ation. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, 1069–1088.

[62] YueWang,WeishiWang, Shafiq Joty, and StevenCHHoi. 2021. Codet5: identifier-
aware unified pre-trained encoder-decoder models for code understanding
and generation. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, 8696–8708.

[63] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys
Poshyvanyk. 2020. On learning meaningful assert statements for unit test
cases. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. ACM, (June 2020). https://doi.org/10.1145%2F3377811.3380429.

[64] Weimin Xiong, Yiwen Guo, and Hao Chen. 2023. The program testing ability
of large language models for code. arXiv preprint arXiv:2310.05727.

[65] Qian Yang, J. Jenny Li, and David Weiss. 2006. A survey of coverage based
testing tools. In Proceedings of the 2006 International Workshop on Automation
of Software Test (AST ’06). Association for Computing Machinery, Shanghai,
China, 99–103. isbn: 1595934081. https://doi.org/10.1145/1138929.1138949.

[66] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, et al. 2024. Codereval:
a benchmark of pragmatic code generation with generative pre-trained mod-
els. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, 1–12.

[67] Jianyu Zhao, Yuyang Rong, Yiwen Guo, Yifeng He, and Hao Chen. 2023. Un-
derstanding programs by exploiting (fuzzing) test cases. In Findings of the
Association for Computational Linguistics (ACL). Toronto, Canada. https://doi.o
rg/10.18653/v1/2023.findings-acl.678.

[68] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and
Bogdan Vasilescu. 2017.The impact of continuous integration on other software
development practices: a large-scale empirical study. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). https://doi
.org/10.1109/ASE.2017.8115619.

[69] Qinkai Zheng, Xiao Xia, Xu Zou, YuxiaoDong, ShanWang, et al. 2023. Codegeex:
a pre-trained model for code generation with multilingual benchmarking on
humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 5673–5684.

[70] Hao-Nan Zhu and Cindy Rubio-González. 2023. On the reproducibility of
software defect datasets. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2324–2335.

[71] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software unit test
coverage and adequacy. ACM Comput. Surv., 29, 4, (Dec. 1997), 366–427. https:
//doi.org/10.1145/267580.267590.

Received 2024-04-12; accepted 2024-07-03

1072

https://arxiv.org/abs/2309.09980
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://doi.org/10.1109/ISSRE.2006.14
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/pdf/10.1126/science.abq1158
http://arxiv.org/abs/1608.03983
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://docs.pytest.org/en/8.0.x/example/parametrize.html
https://docs.pytest.org/en/8.0.x/example/parametrize.html
https://github.com/dubzzz/fast-check
https://github.com/dubzzz/fast-check
https://github.com/emil-e/rapidcheck
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1109/SecDev.2016.043
https://doi.org/10.1109/SecDev.2016.043
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2009.05617
https://doi.org/10.5281/zenodo.12639546
https://doi.org/10.1145%2F3377811.3380429
https://doi.org/10.1145/1138929.1138949
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.18653/v1/2023.findings-acl.678
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Understanding and Generation
	2.2 Software Testing
	2.3 Software Testing via Machine Learning

	3 Design of UniTSyn Dataset
	3.1 Challenges
	3.2 Data Collection
	3.3 Dataset Construction
	3.4 Data Quality Analysis

	4 Experiment
	4.1 UniTester: A Unified Test Generation Model
	4.2 Research Questions and Evaluation Setup
	4.3 Evaluation Results

	5 Limitations
	6 Conclusion

